MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2
نویسندگان
چکیده
Nonalcoholic fibrosing steatohepatitis is a uniform process that occurs throughout nonalcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) have been shown to be involved in the biological processes, but the role and molecular mechanism of miRNAs in NAFLD are not entirely clear. In this study, we observed a significant reduction in the expression of miR-130a-3p in livers of a mouse model with fibrosis induced by a methionine-choline-deficient diet, of NAFLD patients, and in activated hepatic stellate cells (HSCs). A dual-luciferase activity assay confirmed that transforming growth factor-beta receptors (TGFBRs) 1 and 2 were both the target genes of miR-130a-3p. The hepatic expression of TGFBR1 and TGFBR2 was significantly increased. Moreover, the overexpression of miR-130a-3p in HSCs inhibited HSC activation and proliferation, concomitant with the decreased expression of TGFBR1, TGFBR2, Smad2, Smad3, matrix metalloproteinase-2 (MMP-2), MMP-9, type I collagen (Col-1), and Col-4. In addition, the overexpression of miR-130a-3p promoted HSC apoptosis by inducing the expression of caspase-dependent apoptosis genes. Transfection with si-TGFBR1 and si-TGFBR2 revealed effects on HSC function that were consistent with those of miR-130a-3p. TGFBR1 and TGFBR2 rescued the miR-130a-3p-mediated reductions in the mRNA and protein expression levels of Smad2, Smad3, Col-1, and Col-4. In conclusion, our findings suggest that miR-130a-3p might play a critical role in negatively regulating HSC activation and proliferation in the progression of nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2 via the TGF-β/SMAD signaling pathway.
منابع مشابه
MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a
Nonalcoholic fibrosing steatohepatitis is a uniform process throughout nonalcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) have been suggested to modulate cellular processes in liver diseases. However, the functional role of miRNAs in nonalcoholic fibrosing steatohepatitis is largely unclear. In this study, we systematically analyzed the hepatic miRNAs by microarray analysis in nonalco...
متن کاملMicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression
Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compar...
متن کاملLipid-Induced Hepatocyte-Derived Extracellular Vesicles Regulate Hepatic Stellate Cells via MicroRNA Targeting Peroxisome Proliferator-Activated Receptor-γ
BACKGROUND&AIMS Hepatic stellate cells (HSCs) play a key role in liver fibrosis in various chronic liver disorders including nonalcoholic fatty liver disease (NAFLD). The development of liver fibrosis requires a phenotypic switch from quiescent to activated HSCs. The triggers for HSCs activation in NAFLD remain poorly understood. We investigated the role and molecular mechanism of extracellular...
متن کاملmiR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کاملA novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis.
MicroRNAs (miRNAs) are endogenous, noncoding, short, single-stranded RNAs that are evolutionarily conserved and believed to play a role in controlling a variety of biological processes. The roles of miRNAs in insulin resistance and liver steatosis, however, are largely unknown. The objective of this study was to evaluate the roles of miR-130a in the regulation of insulin sensitivity and liver s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017